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This paper proposes a genetic algorithm and a neural network based procedure to estimate the optimal
conditions for a dyestuff wastewater treatment process consisting of a heterogeneous photocatalytic oxidation.
A simulated dyestuff effluent containing the azo dye Reactive Black 5 is decolorized by a photocatalytic
reaction using TiO2 P-25 as catalyst in the presence of Fe+3 and H2O2. A simple feed forward neural network
with one hidden layer was projected and used to predict the evolution in time of the decolorization of this
type of wastewater. The neural model was included in the optimization procedure solved with a simple
genetic algorithm. The goal of the optimization is to calculate the optimal reaction conditions (illumination
time and amounts of reagents) which assure an imposed value for the transmittance.
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Heterogeneous and homogeneous solar photocatalytic
detoxification methods (TiO2/H2O2, Fe+3/H2O2) have shown
recently great promise for the treatment of industrial
wastewater, groundwater and contaminated air.
Additionally, the semiconductor mediated photocatalytic
process has shown also great potential for disinfection of
air and water, thus making possible a number of
applications [1-3]. General description of heterogeneous
and homogeneous photocatalysis under artificial or solar
irradiation is presented in several excellent review articles
[4-7].

The photocatalytic degradation of azo dyes containing
different functionalities using TiO2 or Photo-Fenton reagent
as photocatalysts in aqueous solutions under solar and UV-
A irradiation has been described in a series of researches
[8-10]. The combination of both processes, as has been
reported by other authors [11, 12], leads to an
enhancement of the removal rate of the pollutants due to
the fact that Fe+3 ions and H2O2 act as scanvengers of the
electrons, which are photogenerated in the conduction
band of TiO2, while the produced Fe+2 ions can participate
again in the Fenton reaction.

The phenomenological treatment of such
photochemical systems are very complex. In general, the
rate of reaction in heterogeneous photocatalytic systems
is a complex nonlinear function of catalyst loading, light
intensity, initial solution pH, reactant and oxidants
concentration etc. Due to these reasons, the ability of
systems such as neural networks (NN) to recognize and
reproduce cause–effect relationships through training, for
multiple input–output systems, has gained popularity
recently, in various areas of chemical engineering, also in
the field of photocatalytic treatment of wastewater [13-16].

In recent years, neural networks have been much
studied because of their capability to approximate any
continuous nonlinear functions. Neural networks possess
the ability to learn what happens in a process without
actually modeling the physical and chemical laws that
govern the system  [17]. The use of neural networks has
become increasingly recommended for applications
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where the mechanistic description of the interdependence
between variables is either unknown or very complex. They
are now the most popular artificial tool with applications
in areas such as pattern recognition, classification, process
control, optimization [18-20]. Different types of neural
network applications are reviewed in our precedent work
[21].

In correlation with the aspects considered in the present
paper, several applications of neural networks can be
mentioned.

D. Salari et al. [22] used a three-layer neural network to
predict the methyl tert-buthyl ether concentration in a
photooxidative degradation process in the presence of H2O2
under UV light illumination. S. Göb  et al. [23] has been
developed an empirical model based on artificial neural
networks for fitting the experimental data obtained in a
laboratory batch reactor for the degradation of 2,4-dimethyl
aniline (2,4-xylidine), chosen as a model pollutant. A. Duran
et al. [24] applied neural network modeling to the
degradation of Reactive Blue 4 dye solutions in order to
evaluate the use of the Fenton reagent under UV irradiation
conditions. In a recent paper, A . Duran and J.M.
Monteagudo [25] determine the influence of four
parameters (pH and initial concentrations of TiO2, Fe(II)
and H2O2) on the value of the decoloration kinetic rate
constant using neural networks.

The solution of an optimisation problem can be found
through, among others, deterministic or stochastic
approaches. The former composes the traditional
optimisation methods (direct and gradient-based methods)
and have the disadvantages of requiring the first and/or
second-order derivatives of the objective function and/or
constraints or of being not efficient in non-differentiable
or discontinuous problems. Furthermore, the deterministic
methods are dependent on the chosen initial solution and
can tend to converge towards local extrema of the fitness
function, which is clearly unsatisfactory for problems
where the fitness varies non-monotonously with the
parameters. The stochastic methods, such as genetic
algorithms (GA), do not possess these drawbacks. GAs are
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part of the so-called evolutionary algorithms and compose
a search and optimisation tool with increasing application
in scientific problems. They do not need to have any
information about the search space, just needing an
objective/fitness function that assigns a value to any
solution [26].

Because of their flexibility, ease of operation, minimal
requirements and global perspective, GAs have been
successfully used in a wide variety of problems [27]. GA
has found various applications in chemical engineering
including process control, gas pipeline design, pattern
recognition of multivariate chemical data, optimization of
reaction rate parameters, multipurpose chemical batch
plant design, and scheduling [28]. Details about different
types of genetic algorithms - simple genetic algorithm or
different adaptations for problems with multiple constraints
- and a series of their applications in optimization of the
chemical processes has been descried in the reviews of
Bhaskar [29] and Nandasana [30].

The main goal of this paper is to develop a general
procedure based on neural networks and genetic
algorithms which could be applied to complex optimization
problems.

A series of experiments have been carried out to study
the decolorization of a synthetic dye stuff effluent
containing the Reactive Black 5 (RB5) as a model azo dye,
by photocatalytic degradation using TiO2 P-25 as catalyst
in the presence of Fe+3 and H2O2. Neural networks are used
as efficient modeling tool and genetic algorithms as solving
method of optimization; a neural model of the process,
trained with experimental data, is included in the
optimization procedure. The case study is the estimation
of the evolution in time of a dyestuff wastewater treatment
process consisting of a photocatalytic oxidative reaction.
It is followed a certain decolorization degree related to the
optimal working conditions: illumination time, amounts of
catalyst TiO2 P-25, H2O2 and Fe+3. The GA optimization
procedure has proved easily to apply with useful and
accurate results.

Experimental part
Reagents

The synthetic wastewater (CSW) was made according
to the recipe used for dying of cotton fabrics and was of
the following composition: 0.07 g L-1 Reactive Black 5, 0.1
g L-1 HCOOH, 0.250 g L-1 Perydrol FHB 15 %, 0.375 g L-1

Sequion, 0.5 g L-1 Na2CO3, 0.5 g L-1 NaOH, 3 g L-1 NaCl. The
CSW has an initial pH value of 12 and a DOC of 0.15 g L-1

(0.5 g L-1 COD and 0.12 g L-1 BOD5).
The chemical structure of Reactive Black 5

(C26H21N5O19S6Na4)  is given in figure 1.
TiO2 P-25 of Degussa (anatase/rutile = 3.6/1, surface area

56 m2 g-1 nonporous) was used for all photocatalytic
experiments. All other reagent-grade chemicals, such as
FeCl3 

. 6 H2O, H2O2 etc., were purchased through Merck
and were used without further purification.

Procedures and analysis
Experiments were carried-out in a closed Pyrex cell of

500 ml capacity, provided with ports, at the top, for bubbling

air necessary for the reaction to take place. The reaction
mixture was maintained as suspension by magnetic
stirring. Previous to irradiation, the reaction mixture was
left 15 miutes in the dark with the aim at achieving the
maxium adsorption of the dye onto the semiconductor
catalyst surface. The irradiation was performed with a 9
tral lamp. The spectral response of the irradiation source
(Osram Dulux S 9W/78 UV-A) according to the producer is
ranged between 340 and 400 nm, with a maximum at 366
nm and two additional weak lines in the visible region.
The photon flow per unit volume of the incident light was
determined by chemical actinometry using potassium
ferrioxalate. The initial light flux, under exactly the same
conditions as in the photocatalytic experiments, was
evaluated to be 7.16 . 10-4 Einstein min-1.

In all cases, during the experiments, 500 ml acidified
(pH0=3.2) dye solution containing the appropriate amounts
of semiconducting powder, H2O2 and Fe+3 was magnetically
stirred before and during irradiation. Specific quantities of
samples were withdrawn at periodic intervals and filtered
through a 0.45µm filter (Schleicher and Schuell) in order
to remove the catalyst particles. With the aim at assessing
the extent of color removal, changes in the concentration
of the dye were observed from its characteristic absorption
band using a UV-VIS spectrophotometer Shimadzu UV-160
A. Since a linear dependence between the initial
concentration of the dye solution and his optical density at
585 nm was observed, the photodecomposition was
monitored spectrophotometrically at this wavelength. The
pH values of the solution were monitored with a Metrohm
pH-meter, while the reaction temperature was kept
constant at 25 ± 0.1 °C.

Results and discussions
Processing of experimental data
    Table 1 presents the experimental results obtained in
different conditions of initial RB5, TiO2 P-25, H2O2 and Fe+3

concentrations.
In the first column of the table 1 is given the time intervals

for collecting experimental data. For the first ten minutes,
the samples were collected from two to two minutes, then
the time interval increases to five minutes. Table 1 contains,
in the last column, the RB5 concentration from the sample,
calculated as function of transmittance and using an initial
reference curve.

For the 16 series of experimental data in table 1, the
influence of reaction conditions on the rate of dye
elimination was studied using different graphical
representations.

Figures 2 and 3 render the influence of the ratio between
H2O2 and Fe+3 in the presence of 0.25 g L-1 TiO2 P-25 (fig. 2)
and 1 g L-1 TiO2 P-25 (fig. 3), on the decolorization process
. The best results in both cases – shortest reaction time -
correspond to maximum amounts of the components,
respectively 800 mg L-1 H2O2 and 56 mg L-1 Fe+3.

The influence of TiO2 P-25 amount on the dye
elimination rate is illustrated in figure 4 and the best result
corresponds to 1.08 g L-1.

Fig. 1. The structure of Reactive Black 5
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Table 1
RESULTS OF THE PHOTOCATALYTIC DECOLORIZATION OF A SIMULATED

 DYE STUFF EFFLUENT UNDER VARIOUS EXPERIMENTAL CONDITIONS (pH0 = 3.2)
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Fig. 2. The influence of the Fe+3 and H2O2 concentrations on the
decolorization of the simulated wastewater in the presence of 0.25 g
L-1 TiO2 P-25. 1 - 800 mg L-1 H2O2 + 56 mg L-1 Fe+3; 2 - 800 mg L-1 H2O2

+ 7 mg L-1 Fe+3; 3 - 200 mg L-1 H2O2 + 56 mg L-1 Fe+3; 4 - 200 mg L-1

H2O2 + 7 mg L-1 Fe+3

Fig. 3. The influence of the Fe+3 and H2O2 concentrations on the
decolorization of  the simulated wastewater in the presence of  1 g
L-1 TiO2 P-25 : 1 - 800 mg L-1 H2O2 + 7 mg L-1 Fe+3; 2 - 200 mg L-1 H2O2

+ 56 mg L-1 Fe+3; 3 - 200 mg L-1 H2O2 + 7 mg L-1 Fe+3; 4 - 800 mg L-1

H2O2 + 56 mg L-1 Fe+3.

Fig. 4. The influence of TiO2 P-25 amount on the decolorization of
the simulated wastewater in the presence of  500 mg L-1 H2O2 and
31.5 mg L-1 Fe+3: 1 - 1.08 g L-1 TiO2 P-25 ; 2 - 0.17 g L-1 TiO2 P-25; 3 -

0.625 g L-1 TiO2
 P-25

Fig. 5. The influence of the amounts of TiO2 P-25 and Fe+3 on the
decolorization of  the simulated wastewater in the presence of  800
mg L-1 H2O2. 1 - 1 g L-1 TiO2 P-25 + 56 mg L-1 Fe+3; 2 - 0.25 g L-1 TiO2 P-
25 + 56 mg L-1 Fe+3; 3 - 1 g L-1 TiO2 P-25 + 7 mg L-1 Fe+3; 4 - 0.25 g L-1

TiO2 P-25 + 7 mg L-1 Fe+3

Figure 5 presents the influence of Fe+3 and catalyst
amounts on the wastewater process working with
maximum amount of H2O2 (800 mg L-1). The minimum time
corresponds to the 1g L-1 TiO2 P-25 and maximum amount
of Fe+3 (56 mg L-1). The same influence is shown in figure
6, but for minimum amount of H2O2 (200 mg L-1). The best
result is obtained in the same conditions as in the previous
case, respectively 1g L-1 TiO2 P-25  and 56 mg L-1 Fe+3.
Further, comparing the figures 5 and 6, for 1 g L-1 TiO2 P-25
and 56 mg L-1 Fe+3, 94 % of the dye is eliminated after 2
minutes (fig. 5) where the amount of H2O2 was 800 mg L-1

compared to 92 % for 200 mg L-1 H2O2 in figure 6.

Neural network modeling
Neural network based modeling was applied to predict

the rate of the process as function of the reaction
conditions.

Fig. 6. The influence of the amounts of TiO2 P-25 and Fe+3 on the
decolorization of  the simulated  wastewater  in the presence of 200
mg L-1 H2O2: 1 - 1 g L-1 TiO2 P-25 + 56 mg L-1 Fe+3; 2 - 0.25 g L-1 TiO2 P-
25 + 56 mg L-1 Fe+3; 3 - 1 g L-1 TiO2 P-25 + 7 mg L-1 Fe+3; 4 - 0.25 g L-1

TiO2 P-25 + 7 mg L-1 Fe+3
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Experimental data from table 1 were used to train
different neural networks which model the transmittance
as function of reaction conditions. 10 % of these data
represent the validation data set and the remaining data is
the training data set.

One major problem in the development of neural
network model is determining the network architecture,
i.e. the number of hidden layers and the number of neurons
in each hidden layer. Firstly, potentially good topologies
must be identified. Nevertheless, no good theory or rule
accompanies the neural network topology that should be
used and trial-and-error is still required. This is done by
testing several topologies and comparing the prediction
errors. Smaller errors indicate potentially good
architectures, i.e. neural network topologies with chances
to train well and to output good results [31].

In this study, the four inputs of neural networks are: time
(min), amount of catalyst (TiO2 P-25, g L-1), amounts of H2O2
and Fe+3 (mg L-1) and the network output is the
transmittance (%).

Table 2 contains different feed forward topologies tested
with selected training data and the main performances for
these networks: MSE (Mean Squared Error), r (correlation
between experimental and neural network outputs) and
Ep (percent error). The structure of a network of MLP type
(multilayer perceptron) is given by the number of neurons
in the input layer, corresponding to the four input variables,
then the number of hidden neurons (in one or two layers)
and, finally, the number of neurons in output layer for the
output variable.

Hidden neurons, as well as output layer neuron, use
hyperbolic tangent as nonlinear activation  function. This
type of function, compared to linear or logistic activation
function, produces better learning. All  the network weights
were initialized as random numbers in the interval (-0.5,
0.5). The network was trained using back-propagation
algorithm. For better performance, momentum is used to
allows the network to respond not only to the local
gradient, but also to recent trends in the error surface.
Without momentum, the neural network may get stuck in
a shallow local minimum; with momentum, it can slide
through such a minimum. The training is considered
finished at the point where the network error (MSE)
becomes sufficiently small (less than 0.001). Consequently,
a configuration of 4 input neurons, one hidden layer with
10 hidden neurons and an output layer of 1 neuron is
selected, having MSE = 0.000678, r = 0.9992 and
percentage error, Ep = 5.2863 %.

Table 2
DIFFERENT TOPOLOGIES TESTED FOR THE FEED FORWARD

NEURAL NETWORKS

We select a neural network from table 2 that best
balanced generalization performance against network size
and complexity, that means MLP(4:10:1) (marked in grey
in table 2). This neural model does not have the best
performances, but against other networks with two hidden
layers, the differences are not significant. So we prefer a
simple architecture with performances good enough.

Good predictions are obtained with the neural model
MLP (4:10:1), on training data: average relative errors of
1.2660 % for transmittance and correlation between
experimental data and network prediction were 0.9997.
Relative errors were calculated using the following
formula:

Er=pexp- pnet/pexp  .100                                                 (1)
where p represents the parameter under study
(transmittance), indexes exp and net denote experimental
and network values.

Several examples are presented in figures 7 and 8 which
show a comparison between the two sets of data,
experimental and network outputs. In these figures, series
noted 7 and 8 in table 1 are chosen.

White bars represent the experimental values, and grey
bars – neural network results. Good agreement between
the two data sets proves that the neural model has learned
well the behavior of the process – the increase of
transmittance with time.

Zero value in the figures 7 and 8 represents a relative
value, that means the moment of turning on the UV lamp.
In fact, until zero moment on the graphics, the catalyst was
mixed with wastewater for 15 min. During this time, a
certain amount of dye is absorbed on the catalyst TiO2 P-
25 (5 % approximately).

Fig. 8. Experimental data and neural network predictions on training
data for a series of photocatalytic experiments obtained under the
following conditions: 70 mg L-1 RB5 + 0.25 g L-1 TiO2 P-25 + 200 mg

L-1 H2O2 + 7 mg L-1 Fe+3

Fig. 7. Experimental data and neural network predictions on training
data for a series of photocatalytic  experiments  obtained  under  the
following conditions: 70 mg L-1 RB5 + 1 g L-1 TiO2 P-25 + 200 mg L-1

H2O2 + 7 mg L-1 Fe+3
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A key issue in neural network based process modeling
is the robustness or generalization capability of the
developed models, i.e. how well the model performs on
unseen data. Thus, a serious examination of the accuracy
of the neural network results requires the comparison with
experimental data, which were not used in the training
phase (previously unseen data). That is why the validation
data set is considered as part of experimental data from
table 1. The predictions of the network on validation data
are given in table 3.

It can be noticed a satisfactory agreement between the
two categories of data, experimental and neural network
predictions, with an average relative error of 1.3083,
maximum relative error less than 4% and a correlation of
0.9982. For this reason, the projected neural model MLP
(4:10:1) can be used to make predictions under different
reaction conditions, substituting the experiments that are
time and material consuming.

Genetic algorithm optimization
The general solution of an optimization problem can

be obtained in terms of the following four elements: an
accurate model of the process, a selected number of
control variables, an objective function and a suitable
numerical method for solving the specified optimization
problem.

In this study, the optimization problem includes the
neural model, which is represented as:

NN [Inputs: t, TiO2, H2O2, Fe+3 ; Output: D]                   (2)

The vector of control variables , u, has the components:

   u = [t, TiO2, H2O2, Fe+3]                                                     (3)

An admissible control input u* should be formed in such
a way that the performance index, J, defined by the
following equation, are minimized:

                                     (4)

subject to:

  (5)

with t representing illumination time,  Df – transmittance
at the end of the process and Dd - an imposed value for
this parameter.

Table 3
PREDICTIONS OF MLP(4:10:1) ON VALIDATION DATA

The transmittance, D, is a measure of the dye elimination
from wastewater, with values between 0 and 100 %. High
values for this parameter mean high degree of dye
elimination.

The constraints are very important to define the range
of variation of parameters and to disregard possible
solutions that could be interesting in a theoretical approach
to the problem.

In other words, the optimization problem to be solved
can be formulated as follows: which are the optimal
working conditions (time, amount of catalyst TiO2 P-25,
amounts of H2O2 and Fe+3) necessary to obtain an imposed
transmittance value under the given experimental
conditions?

The optimization procedure includes a neural network
(NN) model and it is solved with a simple genetic algorithm.
The fitness function of the GA is the scalar objective
function (4). Figure 9 illustrates this optimization procedure.
Genetic algorithm provides, after an iterative calculus, the
optimal values for decision variables (time, TiO2, H2O2,
Fe+3), which are the inputs for the neural network model.
With these inputs, the neural network computes the final
value of transmittance, Df which will be compared with
the desired value, Dd. If the two values are identical or there
is a very tight difference between them, we can conclude
that the task of the optimization, represented by the
minimum of the objective function, J, is achieved.

Genetic algorithms are intelligent stochastic
optimization techniques based on the mechanism of
natural selection and genetics. GAs start with an initial set
of solutions, called population. Each solution in the

Fig. 9. The optimization method based on NN and GA.
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Table 4
OPTIMAL DECISION VARIABLES OBTAINED FOR DIFFERENT VALUES OF THE IMPOSED TRANSMITTANCE

population is called a chromosome (or individual), which
represents a point in the search space. The chromosomes
are evolved through successive iterations, called
generations, by genetic operators (selection, crossover and
mutation) that mimic the principle of natural evolution. A
set of solutions are analyzed and modified by genetic
operations simultaneously, where selection operator can
select some “good” solutions as seeds, crossover operator
can generate new solutions hopefully retaining good
features from parents, and mutation operator can enhance
diversity and provide a chance to escape from local optima
[32].  In a GA, a fitness value is assigned to each individual
according to a problem-specific objective function.
Generation by generation, the new individuals, called
offspring, are created and survive with chromosome in the
current population, called parents, to form a new
population.

In our GA model, we used real values encoding for the
chromosomes. There are other approaches for genetic
algorithm based optimization which use binary solution
representation, as it is the simplest type of encoding, in
which chromosomes are composed only of 1’s and 0’s.
Even the number of alleles is thus rather small (two), this
encoding is very common, because it is very easy to use.
However, value encoding is more general, because genes
are real numbers. Some experiments [33] have shown that
real value encoding is more efficient, with better precision
of the solutions.

The initial population is generated randomly. Offspring
are created by genetic operators and it is stored in a
population pool that is a collection of offspring and their
parents.

Selection compares the chromosomes in the population
aiming to choose those which will take part in the
reproduction process. There are different methods for the
selection phase; our paper uses rank selection which first

ranks the population and then every chromosome receives
fitness from this ranking.  The recombination (crossover)
has as main purpose the recombination the features of two
randomly selected parents from the mating pool with the
aim of producing better offspring. The variant of crossover
used in this study supposes different points for all genes,
that means the new individual will no longer be on the
line segment that links its parents. After recombination,
offspring undergoes to mutation. Generally, the mutation
refers to the creation of a new chromosome from one and
only one individual with predefined probability. Mutation
is used to produce small perturbations on chromosomes
to promote diversity of the population. Our GA includes a
variant of mutation named resetting. A gene value is reset
to a random value in its search interval. The purpose is to
refresh the search process, in case when the genetic
diversity of the population decreases (so no longer
converges to the solution) or the algorithm has converged
into a local optimum.

 After the three operators are carried, the offspring is
inserted into the population, replacing the parent
chromosomes in which they were derived from, producing
a new generation. The best individual is copied directly
into the new population (the elitism technique) and the
rest of the individuals are replaced by the new generations.

The termination criterion determines when GA will stop.
In other words, the genetic operations are repeated until a
termination condition is met. In our implementation, we
stopped GA if the maximum number of generations has
been executed or the pre-set number of generations
without improvement in the last best solution has been
reached.

Population size, number of generations, crossover
probability and mutation probability are known as the
control parameters of genetic algorithms. The values of
these parameters must be specified before the execution
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of GA and they depend on the nature of the objective
function. One important thing in using GA as solving
method is to adjust its parameters to the particular problem
approached so as to obtain good solutions and to preserve
the algorithm from a preliminary convergence.

Several tests lead to the following values: pop_size =
50 (size of initial population), max_gen = 100 (maximum
number of generations), cross_rate = 0.9 (rate of
crossover) and mut_rate = 0.03 (rate of mutation).

The fitness function in GA is the objective function of
the optimization procedure. The results of the optimization
are represented by the values of the decision variables
(illumination time, amounts of catalyst, H2O2 and Fe+3) that
lead to a minimum value of the objective function, which
means the achievement of the imposed value for the
transmittance.

The optimization procedure is implemented in Matlab
7.5 with original software, as specific functions were
programmed for each phase of the genetic algorithm.

The variation domains for decision variables are
represented by the constraints (5). Imposing different
values for transmittance, in the interval 75 % ÷ 100 %, the
optimal working conditions obtained by GA optimization
procedure are given in table 4.

In all cases in table 4, Df = Dd, that means the goal of the
optimization has been accomplished.

Therefore, the results in table 4 represent the optimal
working conditions (illumination time, amounts of catalyst,

H2O2 and Fe+3) necessary for obtaining a pre-established
value for transmittance. It was expected that high values
for transmittance involve higher amounts of reagents and
longer illumination time.

Supplementary calculations were added to the data in
table 4 concerning the energy necessary for the
decolorization process composed from the energy
consumed by the light source and for the mixture stirring.
Table 5 is the correspondent for table 4 and the results are
in decreased order by the energy. In this table, two values
were marked with grey bands, having small necessary
energy and relatively high values for transmittance (small
ratio c/c0, respectively, where c is the concentration of the
dye and c0 – initial concentration).

Several remarks should be made concerning the
optimization statistics.

Searching the optimum, GA starts from some initial
points because the first population is generated randomly.
But, during the evolution, new potential solutions are
introduced through mutation process.

GA is a heuristic search method, therefore the global
optimal solution can not be guaranteed. This is why if a
solution is not always satisfactory, the algorithm runs many
times and each of run could give a different solution. In
other words, GA can provide local optimum where a better
solution than all the other ones assigns its genes with
priority and “wins” the population. This is the best solution
in a particular case, but possibly not a good solution in

Table 5
THE ENERGY NECESSARY FOR DECOLORIZATION PROCESS ATTACHED

TO THE DATA FROM TABLE 4
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general. Then, GA should be run many times,  choose and
keep the best solution obtained along the runs.

For a binary GA, the “scheme theorem” proves that there
is a nonzero probability to obtain the solution of a problem.
But for GA with real encoding, this theorem is not always
valid and it is recommended the multiple execution of the
optimization algorithm, followed by the choose of the best
solution among those obtained.

The optimization procedure based on a simple genetic
algorithm and a neural network model applied in this paper
is easy to manipulate and provides accurate results. In this
way, a theoretical complete analysis of the decolorization
process approached here is performed, with useful
information for the practical applications.

Conclusions
This paper provides a general and simple optimization

methodology, based on genetic algorithms and neural
networks, applied to a wastewater decolorization process.
The genetic algorithm solves the optimization problem
(minimum transmittance at the end of the process) and
the neural network constitutes the model included in the
optimization procedure which estimates the evolution in
time of a dyestuff wastewater treatment process consisting
of a photocatalytic oxidative reaction..

Simple architecture of the neural network is proposed
for process modeling: feed forward neural network with
one hidden layer. The training and testing phases of the
modeling procedure is conducted with experimental data
performed in different reaction conditions (catalyst and
Fenton reagent amounts). Good predictions are obtained
with the neural model in validation phase, so this neural
network gives a ver y good representation for the
wastewater treatment process analysis.

The simple genetic algorithm proves to be a good tool
for solving the optimization problem, providing important
information useful in experimental practice.

The method can be easily extended and adapted to
other environmental oriented processes, with high chances
of providing accurate results by simple handling.
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